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Graphical Modeling of the Joint Distribution of Alleles at Associated Loci
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Pairwise linkage disequilibrium, haplotype blocks, and recombination hotspots provide only a partial description
of the patterns of dependences and independences between the allelic states at proximal loci. On the gross scale,
where recombination and spatial relationships dominate, the associations can be reasonably described in these
terms. However, on the fine scale of current high-density maps, the mutation process is also important and creates
associations between loci that are independent of the physical ordering and that can not be summarized with
pairwise measures of association. Graphical modeling provides a standard statistical framework for characterizing
precisely these sorts of complex stochastic data. Although graphical models are often used in situations in which
assumptions lead naturally to specific models, it is less well known that estimation of graphical models is also a
developed field. We show how decomposable graphical models can be fitted to dense genetic data. The objective
function is the maximized log likelihood for the model penalized by a multiple of the model’s degrees of freedom.
We also describe how this can be modified to incorporate prior information of locus position. Simulated annealing
is used to find good solutions. Part of the appeal of this approach is that categorical phenotypes can be included
in the same analysis and association with polymorphisms can be assessed jointly with the interlocus associations.
We illustrate our method with genotypic data from 25 loci in the ELAC2 gene. The results contain third- and
fourth-order locus interactions and show that, at this density of markers, linkage disequilibrium is not a simple
function of physical distance. Graphical models provide more flexibility to express these features of the joint
distribution of alleles than do monotonic functions connecting physical and genetic maps.

Introduction

Graphical modeling is the statistical study of high-dimen-
sional joint distributions that break down into products
of simpler, lower-dimensional factors. A graphical model
consists of a Markov graph that represents conditional
independences between the variables and the set of pa-
rameters that define the component factors. Although the
graphical models are not always made explicit, they en-
able computations to be made on complex models in a
tractable way in many areas of genetics. Perhaps the best
example is the peeling method of Elston and Stewart
(1971) and Thompson et al. (1978), which enables link-
age and segregation analyses in extended pedigrees. In
this example, the variables are the genotypes of pedigree
members, the Markov graph is constructed by the union
of the triangles formed by connecting parent/offspring
triplets, and the parameters are those that describe Men-
delian inheritance, the penetrance probabilities, and the
population genotype frequencies. This particular appli-
cation displays almost all the features of the later gener-
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al developments by Lauritzen and Spiegelhalter (1988).
Most Markov chain Monte Carlo (MCMC) methods also
have an underlying graphical model, although, again, this
is not always made explicit (but see Thomas et al. [2000]
for an example in which it is).

Although less commonly done, graphical models can
be estimated empirically from observations from a joint
distribution. The methods, developed by Højsgaard and
Thiesson (1995) and implemented by them in the BI-
FROST program, are based on maximizing a penalized
likelihood function. In this article, we describe the es-
timation of graphical models to describe linkage dis-
equilibrium.

Modeling linkage disequilibrium, or the tendency of
alleles observed at one locus not to be independent of
alleles observed at nearby loci, in an appropriate way
has become an important problem in statistical genetics.
Dense maps of polymorphisms, particularly SNPs, are
now available. More than 3,000,000 polymorphisms
are currently reported in the human genome. Moreover,
the cost of assaying genotypes for samples of individuals
has decreased, and the speed with which this can be
done increased. Since SNPs are usually diallelic, taken
individually they are comparatively uninformative, so
it is essential to consider the haplotypes formed by com-
binations of them. On the other hand, the number of
possible haplotypes grows exponentially with the num-
ber of loci and, potentially, so does the number of pa-
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rameters required to describe their frequencies. The
approach we present here seeks to replace the full-
dimensional contingency table with a product of tables
of far lower dimension. We estimate not only the mul-
tinomial parameters of the contingency tables but also
which sets of variables give the best factorization.

This approach contrasts with other techniques used
in this field, such as the PHASE method for haplotype
reconstruction (Stephens et al. 2001; PHASE Web site),
which gains power by modeling the underlying pro-
cesses of mutation and recombination. Although most
of the work presented here concerns a straightforward
application of graphical model estimation, we also de-
scribe how this can be adapted to incorporate prior
information about locus position. In this way, we hope
to claim some additional power without losing the ad-
vantages of robustness and computational efficiency of
our empirical method. We illustrate our method with
an analysis of 25 loci in and around the ELAC2 gene
in a sample of 688 unrelated individuals from a study
of cancer in Utah.

Most approaches to modeling linkage disequilib-
rium impose strong constraints based on physical lo-
cation. For instance, a monotone function is often used
to transform the physical map into the genetic map,
as in the analysis of loci on chromosome 22 by Dawson
et al. (2002) and of haplotype blocks and recombi-
nation hotspots by Daly et al. (2001); Johnson et al.
(2001) characterize linkage disequilibrium in terms of
the behavior of contiguous genetic regions. Although
such approaches are valuable for describing large ge-
netic regions, at the scale of resolution we examine,
as our results show, the tendency of linkage disequi-
librium to decay with distance has less of an influence
on the joint distribution than the mutation history. The
greater flexibility of graphical models can better de-
scribe patterns of linkage disequilibrium under these
circumstances and also allows for characterization of
higher-order interactions between the loci considered.

Our approach is empirical. We do not use a model
for population genetics; hence, we cannot directly make
inferences about how the population evolved or how it
will continue to do so in future. We can, however, pro-
vide a tractable, concise, and accurate representation of
the current linkage disequilibrium structure that is di-
rectly relevant to mapping phenotypes by association
and to choosing informative subsets of loci.

Methods

Haplotype Data

The method described below assumes the input of a
list of haplotypes independently sampled from a popu-
lation. Let be the allele of the ith haplotype at thexi,j

jth locus, and let the number of possible alleles at the
jth locus be . Let . Since most of the dataa X p {x Gi,j}j i,j

available will be SNPs, will usually be 2; however, theaj

method is general enough to handle any number of al-
leles and, indeed, any categorical data.

Haplotypes may be determined experimentally, recon-
structed from family data, or reconstructed from a sam-
ple of genotypes from a population through use of
programs such as PHASE (Stephens et al. 2001), D.
Clayton’s SNPHAP (SNPHAP Web site), or GCHap
(Thomas 2003). At this stage, we will also assume that
the data are complete, with no unobserved variables.

For each locus j, we define , the random variableLj

that is the allele of a randomly chosen haplotype from
the population at the jth locus. Let the full set of vari-
ables be . The full joint distributionV p {L ,L , … ,L }1 2 n

of V can be considered as an n-dimensional contingency
table. The high dimensionality and high number of mul-
tinomial parameters, however, mean that this is not a
useful or tractable representation, and what follows will
be aimed at estimating from the data, X, less complex
but informative models.

We define S to be any subset of the elements in V. For
each S, there are possible allelic combinations� aii:L �Si

across the loci in S. If S contains s loci, then classification
of the data in X by the loci in S can be done with an s-
dimensional contingency table. If we let be the numberyi

of observations in the ith cell of the table and let bepi

the model probability of an observation in that cell, the
usual maximum likelihood estimate of is then givenpi

by

yip̂ p ,i � yi
i

and the maximized log likelihood, up to the addition of
a constant, is given by

ˆ ˆ[ ]log L(S) p y log (p ) . (1)� i i

The degrees of freedom for the contingency table are

df(S) p a � 1 . (2)� i
i:L �Si

Note that the sum in equation (1) requires only the non-
zero values of and, thus, requires computational timeyi

that is a linear function of the number of observed hap-
lotypes, or rows, of X. It can, therefore, be calculated
even for contingency tables of very high dimension.

Graphical Models

Graphical models can specify stochastic systems of
lower complexity to describe data in high-dimension
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contingency tables. For a full discussion, see Lauritzen
and Spiegelhalter (1988) and Højsgaard and Thiesson
(1995). In what follows, we will consider graphs in
which the vertices represent the variables of our system,

, and edges represent the associationsV p {L ,L , … ,L }1 2 n

between them. To avoid another layer of notation, we
will have denote both the ith variable and the vertexLi

of the graph that represents it.
A graphical model for a set of random variables

is defined by a graph G and a modelV p {L ,L , … ,L }1 2 n

M. The vertices of G are V, and G has edges E such that
the joint distribution of V can be factorized into a prod-
uct of k nonnegative functions, , whose argumentsf(C )l

are the complete subgraphs, or cliques, of G. That{C }l
is,

P(V) p f(C ) , C P V ,� l l
l

for , where, if and for anyl p 1, … ,k L � C L � Ci l j l

, then the edge, , is contained in E. The modelC (L ,L )l i j

M specifies the probabilities of the distributions that
factorizes into.P(V)

The conditional independences of the model can then
be determined from G. For example, if and areS S1 2

subsets of V such that all paths from any vertex in S1

to any vertex in must pass through a third subsetS2

, then and are conditionally independent, givenS S S3 1 2

, orS3

P(S ,S FS ) p P(S FS )P(S FS ) ,1 2 3 1 3 2 3

and is said to separate and . Also, the conditionalS S S3 1 2

distribution of any variable in V, given all the otherLi

variables, depends only on the values of the variables
that neighbor in G. That is,Li

P(LFV � L ) p P[LFD(L )] ,i i i i

where contains all vertices such thatD(L ) L (L ,L ) �i j i j

.E
The simplest graphical model would be a graph with

vertices V but no edges, which represents complete in-
dependence between all the variables in V: this is the
trivial graphical model. Another simple example is a
first-order Markov chain, which can be represented by

, where E contains the edges . TheG(V,E) n � 1 (L ,L )i i�1

most complex graphical model has all pos-n(n � 1)/2
sible edges and represents the n-dimensional contingency
table. This is called the saturated model.

Decomposable graphical models are a tractable sub-
class of models for which the graph G has the running

intersection condition for its cliques—that is, the cliques
can be ordered, and subsets defined, such thatC Si i

S p C ∩ w C P C ,i i j l
1j:j i

for some . are called the “clique separators.” Anl 1 i Si

equivalent condition is that G is a triangulated graph—
that is, there are no cycles of length 13 that are un-
chorded. For instance, four vertices cannot form a rec-
tangle unless one of the diagonal edges is also present.
If the four vertices are loci A, B, C, and D, say, such
that , , , and all form pairs in link-(A,B) (B,C) (C,D) (D,A)
age disequilibrium, triangulation requires that at least
one of the pair or must also be in linkage(A,C) (B,D)
disequilibrium. For further information about trian-
gulated graphs, see Golumbic (1980). A decomposable
graphical model can be specified by such an ordering of
cliques, which can be found in linear time in a decom-
posable graph using the maximum cardinality search
(Tarjan and Yannakakis 1984). This decomposition of
G allows the joint distribution of V to be factorized as

k k
P(C )iP(V) p P(CFS ) p ,� �i i

ip1 ip1 P(S )i

and, thus, the n-dimensional contingency table for V is
decomposed as a function of lower-dimensional tables.
Note that is always the empty set.Sk

The Y Chromosome and Mitochondrion

As an illustrative aside, we describe how to derive the
graphical model for regions of no recombination, such as
the Y chromosome, mitochondrion, and small autosomal
haplotype blocks. We apply the simplifying assumption
of the infinite sites model that no second mutation occurs
at a polymorphic site. Hence, all polymorphisms are dial-
lelic, and a mutated allele never reverts back to the original
allele. We also assume that all haplotypes ancestral to
those in the sample are also present in the sample. Al-
though this is not a plausible assumption, it simplifies the
illustration, and, in fact, a similar relationship between
the ancestral tree and graphical model exists for estimated
trees containing unobserved but inferred ancestral hap-
lotypes. Under our assumptions, we can reconstruct the
ancestry completely by drawing a tree in which haplotypes
are nodes and haplotypes that differ at one base only are
connected. If we know from an outgroup, or related spe-
cies, which haplotype is the wild type, we can also root
the tree; however, this is not necessary to derive the graph-
ical model. A small example is shown in figure 1. The
ancestral haplotype is 00000000, and mutations are the
places in which 1s replace 0s.

Under these assumptions, a SNP is represented by a
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Figure 1 An example of the ancestry of haplotypes in a region with no recombination

unique branch in the tree, the one that connects hap-
lotypes that differ only at the SNP in question. From
this tree, we can construct a new graph in which vertices
represent the SNPs and edges join SNPs whose branches
in the original tree shared an end point. This derived
graph is the Markov graph for the SNP locus variables
and is shown in figure 2. The mode of derivation ensures
that the graph is triangulated, and, therefore, the graph-
ical model is decomposable.

To see that the graph does indeed represent the ap-
propriate conditional independences, consider, for ex-
ample, the derivation of the haplotype 01000001 from
01000000. First, note that, since allele 1 occurs at SNP2
because of a mutation on the original ancestral haplo-
type, if we observe allele 1 at SNP2, all SNPs other than
SNP8 must have allele 0, regardless of the allele at SNP8.
That is, for or ,a p 0 a p 1

P {SNP1,SNP3, … ,SNP7} p {0,0, … ,0}(
FSNP2 p 1,SNP8 p a)

p P {SNP1,SNP3, … ,SNP7} p {0,0, … ,0}(
FSNP2 p 1)

p 1 .

On the other hand, since allele 1 at SNP8 occurs as
a mutation on a haplotype that has allele 1 at SNP2, if
we observe allele 0 at SNP2, then the allele at SNP8

must also be 0, regardless of the alleles at the remaining
loci. That is,

P SNP8 p 0FSNP2 p 0,(
{SNP1,SNP3, … SNP7} p {a ,a , … a })1 3 7

p P(SNP8 p 0FSNP2 p 0)

p 1 ,

where each or 1.a p 0i

Hence, given either allele at SNP2, {SNP8} and
are independent sets. The other{SNP1,SNP3, … ,SNP7}

conditional independences can be similarly derived.

Fitting Graphical Models

For any of the cliques or separators , we can findC Si i

the maximized log likelihood and degrees of freedom
from equations (1) and (2). Moreover, the maximized
log likelihood for the whole graphical model G is given
by

ˆ[ ] [ ]log L(G) pmax log L(G,M)
M

k k

ˆ ˆ[ ] [ ]p log L(C ) � log L(S ) , (3)� �i i
ip1 ip1
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Figure 2 The graphical model for the SNPs derived from figure 1. The cliques are as follows, from left to right: {SNP8, SNP2}, {SNP2,
SNP4, SNP6}, {SNP6, SNP7, SNP5, SNP3}, and {SNP3, SNP1}. The clique intersections are {SNP2}, {SNP6}, and {SNP3}.

and the degrees of freedom are given by

k k

df(G) p df(C ) � df(S ).� �i i
ip1 ip1

Thus, both and can be computedˆlog [L(G)] df(G)
efficiently.

Straightforward maximization of the log likelihood
over Q, the set of decomposable graphical models, will
choose saturated models; hence, we follow the strategy
of the BIFROST implementation (Højsgaard and Thies-
son 1995) by using the heuristic information criterion,

ˆ[ ]IC(G) p log L(G) �adf(G) ,

where a is a complexity penalty to be specified. In the
current implementation, we use , wherea p [log (m)] /2
m is the number of haplotypes observed, which is the
Bayesian information criterion of Schwarz (1978).

We can specify a partial ordering on Q by describing
G as a submodel of if and only if , and the′ ′G E O E
BIFROST program exploits this to choose a model by
a stepwise backward elimination strategy. However, the
result of this is usually a local optimum. We attempt to
improve on this by using simulated annealing (Kirk-
patrick and Gellatt 1982). The strategy is as follows:

1. Find an initial incumbent graph, G, which repre-
sents a decomposable graphical model and evaluate

.IC(G)
2. Propose a new model, .′G
3. If is decomposable and′G

′IC(G ) � IC(G) � g # Z ,

then becomes the new incumbent. Otherwise,′G
G remains the incumbent. In either case, iterate
from step 2.

For each iteration, Z is a new independent random re-
alization from the Exponential(1) distribution, and g is

the annealing parameter, which is set at a large value
and gradually reduced to 0, at which time the process
becomes a random downhill search.

The way in which G is perturbed to form , the′G
proposed new incumbent, is the most important feature
of the search. At each iteration we choose, at random,
one of the following perturbations:

1. Randomly select two vertices of G. If they are con-
nected, form by disconnecting them. If they are′G
disconnected, form by connecting them.′G

2. Choose a random vertex, , of G, which has atLi

least one neighbor and at least one nonneighbor in
the graph. Choose a random neighbor of andL Lj i

a random nonneighbor . Form by discon-′L Gl

necting and connecting .(L ,L ) (L ,L )i j i l

3. Choose, at random, r nonoverlapping pairs of ver-
tices. Apply perturbation 1 above to each pair si-
multaneously. Implement for .r p 2, … ,5

4. Choose, at random, a set of r distinct vertices. Apply
perturbation 1 above to each of the pairsr(r � 1)/2
simultaneously. Implement for .r p 3, … ,5

5. Choose, at random, two distinct vertices of G. Form
by exchanging their neighbor sets.′G

6. Choose a random vertex of G. Form by discon-′G
necting the vertex from its neighbors and connect-
ing it to a new random set of neighbors of the same
size.

The underlying Markov chain induced by this process
is irreducible, since any decomposable graph G can be
disassembled to the trivial graph with no edges by re-
moving one edge at a time in such a way that all inter-
mediate graphs are also decomposable. Although only
perturbation 1 is necessary to ensure irreducibility, test
runs have shown that the others significantly improve
the mixing properties.

In addition, the perturbations have all been constructed
so that the probability of proposing a graph from G′G
is the same as that of proposing G from . Thus, the′G
scheme is reversible, and, therefore, for a fixed value of
g, the whole process is equivalent to Metropolis sampling
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(Metropolis et al. 1953) from the set of all graphs with
n vertices with ergodic distribution:

1/g
�adf(G)ˆ[ ]L(G)e if G is decomposable

P(G) ∝ .{0 otherwise

Thus, setting will allow posterior sampling ofg p 1
graphical models in an approximate or pseudo-Bayesian
manner. Hence, we can approximate the posterior prob-
ability that particular edges exist or that particular con-
ditional independences hold. For arbitrary values of g,
we can use importance sampling with weights

[1�(1/g)]
�adf(G) IC(G)#[1�(1/g)]ˆ[ ]L(G)e p e .

Using will typically give a chain with far betterg 1 1
mixing properties. To avoid the numerical problems of
dealing with very small numbers, it is better to scale the
weights. If is some fixed high scoring graph, we canG0

use the weights

{[IC(G)�IC(G )]#[1�(1/g)]}0e .

If can be chosen to be the graph that globally max-G0

imizes the information function, or if we can find an
upper bound for , then the same weights can alsoIC(G )0

be used for rejection sampling.

Incorporating Information on Physical Location

The method we have presented so far is a standard
application of graphical modeling that could be applied
to any categorical data. We have attempted to describe
the data as presented, without attempting to model the
processes that gave rise to it. As Stephens et al. (2001)
have shown with their development of the PHASE hap-
lotype estimation procedure, statistical power can be im-
proved by incorporating knowledge of the population
genetic processes. The cost is typically more involved
computation and possibly a lack of robustness to de-
viation from the assumed model.

In our illustration below, in which we have a large
number of haplotypes from which to estimate relation-
ships between a tightly linked set of markers, the effects
of more involved modeling is likely small. However, for
data spanning larger genomic regions, the effect of our
knowledge that linkage disequilibrium tends to decay
with distance will be greater. Such knowledge can be
incorporated very naturally within our estimation frame-
work, by altering the prior distribution to reflect the fact
that, before looking at the data, our prior belief is that
proximal loci are more likely to be dependent than dis-
tant ones. We can do this by adding another penalty
term to the score of a graphical model that penalizes
edges in the graph by how far apart the joined loci are.

If we let be the position of the ith locus and use thezi

square root of distance between loci as our penalty, the
altered score becomes

′ ˆ �[ ]IC (G) p log L(G) �adf(G) � b Fz � zF .� i j
(i,j)�G

(4)

The square-root function has been used to mimic the
slow decay rate in linkage disequilibrium seen in the
graphs of Dawson et al. (2002); however, this and the
appropriate value of b need further analysis.

A far stronger possible use of prior information could
be made by restricting the Markov graph to the subset
of interval graphs. Interval graphs are triangulated graphs
that are defined by associating a vertex with an interval
on the real line. Vertices are joined if and only if the
associated intervals have a nonempty intersection. Each
locus can be represented by a region on the genome that
contains the locus position, with the bounds of the region
to each side of the locus representing, roughly speaking,
the limits to which linkage disequilibrium with the locus
extends. Such a restriction has some intuitive appeal,
would be straightforward to program, should greatly in-
crease the power to estimated models within the subclass,
and so should be considered when mapping a large genetic
region. However, as can be seen from the results below,
for small regions in tight linkage disequilibrium, there will
be relationships in the data that cannot be represented in
this way.

Testing for Disease Association

We do not have to specifically assume that the variables
considered represent allelic states at loci; the method ap-
plies to any categorical data. It is straightforward, there-
fore, to include categorical variables associated with the
haplotype variables. In particular, we can add indicators
as to whether the haplotype came from an individual
affected by a certain disease. We can also include covar-
iates; for example, in familial analyses of prostate cancer,
we have included whether the diagnosis was made before
or after prostate-specific-antigen testing was routine and
whether onset was early or late. We would also, of course,
include the sex of the individual, so that the linkage dis-
equilibrium structure could be estimated using haplotypes
from males and females while simultaneously accounting
for a male-specific disease. In fitting the graphical model,
the phenotypes have no special status, and the fitted model
may or may not indicate that there are dependences be-
tween them and the loci. We can, therefore, construct a
standard x2 likelihood-ratio test for association compar-
ing the estimated model with the submodel derived by
removing any links between the phenotype variable and
the loci.
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Table 1

Positions of the 25 Polymorphisms in and around ELAC2

Locus
Positiona

(bp) Alleles Description

s1 �12682 T, C Promoter region,
evolutionarily
conserved

s2 �12479 G, A Promoter region,
evolutionarily
conserved

s3 �6634 C, G Promoter region
s4 �6280 G, A Promoter region
s5 �3831 C, T Promoter region
s6 �689 T, G Promoter region
s7 �381 G, A Promoter region
s8 1005 T, C Intron
s9 4659 T, C Intron
SL (s10) 6256 C, T Exon, coding
s11 7241 A, G Intron
s12 12100 ins GAT Intron
s13 15691 A, T Intron
s14 19577 C, T Intron
AT (s15) 21363 G, A Exon, coding
s16b 21383 ins G Exon, coding
s17 22970 A, G Exon, coding
s18 24991 G, A Exon, coding
s19 25281 C, G Exon, 3′ UTR
s20 25584 del 7 3′ flanking region
s21 26853 T, C 3′ flanking region, in

KIAA0672
s22 27065 A, C 3′ flanking region, in

KIAA0672
s23 48681 G, A and ins/del 3 alleles, 3′ flanking

region, in
KIAA0672

s24 69894 T, A 3′ flanking region, in
KIAA0672

s25 80582 C, T 3′ flanking region, in
KIAA0672

a Position is given in bp away from the first base of the first exon
of ELAC2.

b The minor allele for s16, ins G, is not seen in this data set, but
the locus is included for compatibility with an analysis, by N.J.C.
(unpublished data), of the full data set from which the data here are
drawn.

Choosing Subsets of Loci

Shannon’s information function (Shannon 1948) is
an obvious criterion on which to select subsets of in-
formative loci (Hampe et al. 2003), and, as might be
suggested from the form of equation (1), its calculation
is tractable for graphical models. For a contingency
table with estimated probabilities , it is given, up top̂i

an additive constant, by the negative of the maximized
log likelihood; for an estimated graphical model, it is

, as given in equation (3).ˆ� log [L(G)]
To find the information in a subset of variables ac-

cording to a given graphical model, we have to sum over
the variables omitted. In this case, we can achieve this
without explicitly making the intensive summation cal-
culations. We do this by first finding the Markov graph
obtained when the omitted variables are summed out
and then calculating the maximized log likelihood of the
corresponding model from the data, using equation (3).
The first step is done by taking each omitted variable in
turn, joining all its neighbors in the graph, and then
removing that variable from the graph. The result is
invariant to the order in which the variables are re-
moved. The cliques and intersections of this resulting
graph, which is always triangulated, are found, and the
log likelihood—and, hence, the Shannon information—
is calculated. Note again that, although this process re-
sults in graphs with large cliques, the computation in
equation (3) depends only on the nonzero entries in the
corresponding contingency table and, hence, again takes
computational time that is a linear function of the num-
ber of observed haplotypes.

Results

We have implemented the above method in a Java pro-
gram that can be downloaded from A.T.’s Web site. The
data used below are also available at this site.

The program has a graphical interface that shows the
current estimate of the graph and allows the user to
control the annealing parameter g. The maximized IC
with log likelihood and degrees of freedom of the cur-
rent best graph are output to the screen.

As an illustration, we present an analysis of associ-
ation between loci in the ELAC2 gene. From several
large extended families involved in prostate, breast, and
ovarian cancer studies performed by the Genetic Epi-
demiology group at the University of Utah, we selected
all individuals whose parents were not in the pedi-
grees—that is, the founders. Of these, we found 688
individuals who had been genotyped at at least 12 of
our panel of 25 loci, which are all within 93 kb in
and around the ELAC2 gene. The locations and brief
descriptions of the loci are given in table 1. The five
most downstream loci, s21–s25, are in the neighboring

gene KIAA0672, which is an uncharacterized GTPase-
activator protein for Rho-like GTPases. Two of the loci
are reported to associate with prostate cancer (Tavtigian
et al. 2001; Camp and Tavtigian 2002): SLps10, which
changes a serine to a leucine at amino acid position 217,
and ATps15, which changes an alanine to a threonine
at position 541. All samples were obtained under ap-
propriate institutional-review-board approval at the
University of Utah.

From the original set of genotypes, we reconstructed
the haplotypes through use of the ApproxGCHap pro-
gram, which is an implementation of an approximate
gene counting or expectation-maximization algorithm
method for this problem (Thomas 2003). Thus, although
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Figure 3 Estimated Markov graph from a study of 688 individuals genotyped at 25 loci in and around the ELAC2 gene

our original data were not complete, we circumvented
the problem by estimating the missing observations.
The complexity penalty a was set at [log (1,376)] /2 p

.3.613
Several runs of simulated annealing with various

cooling schedules resulted in the graph shown in figure
3 as our best guess at the global optimum. Some runs
converged to other local maxima, indicating that im-
provements on mixing properties and the annealing
schedule are needed. The estimated graph has a log like-
lihood of �5,364.3 with 115 df.

Although the graph shows some spatial effects, the
structure of dependence is not dominated by chromo-
somal location. The loci s5 and s24 show association
although they are physically distant, as do s4 and s20.
The loci s16 and s18 are independent of the others; on
inspection, this lack of association turned out to be due
to a lack of information: s16 is totally uninformative,
and the rarer allele for s18 appears only eight times in
the data set. These loci could be removed from this
analysis, although the rarer alleles for each appear more

often in the extended data set from which ours is drawn.
There are also high-order interactions, such as the as-
sociation between s5, s12, s17, and s24, which form
one of many 4-cliques. There are no 5-cliques in the
graph.

To assess the strengths of the estimated associations,
we compared the optimal model with submodels ob-
tained by removing single edges. Some care is needed
here, since omitting some edges results in nontriangu-
lated subgraphs. For example, disconnecting s24 and
s23 leaves the unchorded 4-cycle . We{s11,s24,s25,s23}
checked each edge of the graph in turn and, if its re-
moval gave a triangulated graph, we compared the
nested models with the usual x2 likelihood-ratio test.
The results are given in table 2. Since the test statistics
are so extreme, we give the statistic and degrees of free-
dom rather than the P values. The least significant link
is that between s13 and s20, which has a P value of
.00016.

We also performed the converse operation of adding
each edge, checking whether the resulting graph was
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Table 2

Test Statistics and Degrees of
Freedom Submodels in which One
Edge at a Time is Deleted from the
Estimated Model

Edge x2 df

s1, s2 1,110.5 1
s1, s5 320.3 4
s1, s7 132.0 4
s1, s12 396.4 4
s3, AT 379.3 1
s4, s5 905.0 2
s4, s20 755.6 2
s5, s17 482.0 4
s6, s7 1,196.2 2
s6, s12 20.8 2
s7, s22 173.2 4
s8, SL 1,630.5 1
s9, s17 1,085.0 1
SL, s12 1,628.2 1
s11, AT 216.4 4
s11, s23 490.6 8
s12, s13 546.5 2
s12, AT 382.1 4
s13, s20 17.4 2
s14, s17 1,059.3 1
AT, s17 220.9 4
s17, s21 1,072.5 1
s17, s23 689.3 8
s19, s20 1,772.0 1
s20, s22 452.6 4
s22, s24 130.8 4
s23, s25 283.7 4
s24, s25 603.0 3

NOTE.—Edges whose omission re-
sults in a nontriangulated subgraph are
not tested.

Table 3

Test Statistics, Degrees of Freedom, and P Values
of Supermodels Created by Adding an Edge to the
Estimated Model

Edge x2 df P Value

SL, s20 13.4 2 .0012
SL, s17 12.0 2 .0024
s2, s12 9.4 2 .0091
s4, s22 13.4 4 .0096
s18, s25 6.2 1 .0127
s5, s9 8.0 2 .0185
SL, s24 7.9 2 .0189
s2, s7 7.8 2 .0204
s21, s23 11.4 4 .0222
s8, s12 7.4 2 .0243
SL, s13 7.4 2 .0245
s18, s24 4.7 1 .0309
s18, s20 4.5 1 .0333
s18, s19 4.4 1 .0351
s17, s25 12.9 6 .0450

NOTE.—Edges whose addition results in a non-
triangulated supergraph are not tested. Results are
given for the supermodels whose P value is !.05.

triangulated, and assessing its significance. Table 3 gives
the results for the most significant supermodels, as as-
sessed using the x2 test once more. On the basis of this
table, several edges could reasonably be added to the
graph, so our information criterion appears to be some-
what parsimonious in allocating edges. However, note
that the likelihood-ratio statistics for most of those
edges included in the graph are orders of magnitude
larger than those omitted.

Figures 4 and 5 show the Markov graphs estimated
with the additional penalty for the square root of dis-
tances, in base pairs, between connected loci, as in equa-
tion (4) above. The parameter b was arbitrarily set to
1 and 2, following some experimentation to obtain val-
ues illustrating the range of models estimated. The mod-
els had log likelihoods and degrees of freedom, respec-
tively, of �6,765.3 and 58 for and of �7,416.1b p 1
and 47 for . For the case of , the optimalb p 2 b p 2
graph was simple enough that the perturbation scheme
was able to reach this solution even with g fixed at 0.

That is, a straightforward random downhill search suf-
ficed, and annealing was not necessary.

As might be expected, the results of using prior lo-
cation information are simpler graphs. However, they
are not subgraphs of the solution in figure 3 butb p 0
have some additional edges to replace those forced out
by the distance penalty. Note, however, that there are
still strong associations between distant loci. Even with

, s4 and s22 are seen to be in disequilibrium (seeb p 2
fig. 5).

To compare our findings with those from a non-
graphical method, we also analyzed the same data us-
ing the principal-components analysis method intro-
duced by Horne and Camp (2004), to determine the
groups of variants in strong linkage disequilibrium and
the loci that effectively tag these groups. This method
allows for noncontiguous and overlapping linkage dis-
equilibrium groups, which is important when analyz-
ing small genomic regions in which both mutation and
recombination rates must be considered. Many other
methods require contiguous and mutually exclusive
groups, such as SNPtagger (Ke and Cardon 2003) or
HaploBlockFinder (Zhang and Jin 2003), or allow for
mutation but do not provide the linkage disequilibrium
groups—just the tagging loci—such as tagSNPs (Stram
et al. 2003) or Clayton’s STATA utility used by Johnson
et al. (2001). Principal-components analysis was per-
formed on all haplotypes, with variants considered as
constituent components, and those factors with eigen-
values 10.7 were extracted. The number of extracted
factors represents the number of linkage disequilibrium
groups. These underwent oblique rotation to remove
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Figure 4 The graphical model estimated with an additional penalty for physical distance between connected loci. .b p 1.0

interfactor correlation, and variants with coefficients
10.4 in each factor were considered the members of the
linkage disequilibrium groups (see Jolliffe [1986] and
Stevens [1992] for a justification of these thresholding
values). To determine tagging loci for each group, prin-
cipal-components analysis was performed again for
each linkage disequilibrium group by considering only
the variants contained within each group separately.
The highest-loading variant in each within group factor
extracted was considered a tagging locus. For complete
details of this method, see Horne and Camp (2004).

Seven factors with eigenvalues of at least 0.7 were
extracted, representing seven linkage disequilibrium
groups, which together explained 91.6% of the variance
of all haplotypes observed. These linkage disequilibrium
groups, ordered by eigenvalue, are given in table 4 and
have also been indicated in figure 6. This shows a strong
correspondence between the linkage disequilibrium
groups identified by principal-components analysis and
the links between loci in the estimated graphical model.
The correspondence is the best for the graph generated
without imposing priors for physical location. However,
it remains strong even when the physical location priors
are used (see figs. 4 and 5), although some links dis-
appear. For figure 4, in which , s22 is not con-b p 1
nected to other variants in linkage disequilibrium group
3, and for figure 5, in which , two links have beenb p 2
lost, AT and s3 are no longer connected, and s5 is no

longer connected to the other variants in linkage dis-
equilibrium group 2.

In total, nine tagging loci were identified using prin-
cipal-components analysis, which accounted for 81.3%
of the total genetic variance: s1, s6, s11, AT, s17, s18,
s20, s22, and s24. These also are indicated in figure 6.
It should be noted that s2 could be substituted for s1,
s25 for s24, and s3 for AT, since these loci loaded equally
on their respective factors. We assessed this nine-locus
set for information content through use of the graphical
model. The log likelihood of the model obtained by sum-
ming out the other variables was �3,716.51; hence, these
loci contain of the infor-3,716.51/5,364.34 p 69.3%
mation in the whole set. This was fractionally above the
80th percentile as estimated from a sample of 100,000
randomly chosen nine-locus sets. The best set sampled
was {s2, s4, s5, s12, s19, s22, s23, s24, s25}, which holds
80.7% of the information available from using all loci.
Although at first glance it seems strange that all of s22–
s25 are chosen, table 1 shows that, between them, these
four loci cover more than half of the genomic region
covered by the whole set, so the result is reasonable.

Discussion

The primary challenges for this method are ones of scaling
and efficiency. Although the data sets we have analyzed
to date have been relatively small—the example above is
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Figure 5 The graphical model estimated with an additional penalty for physical distance between connected loci. .b p 2.0

Table 4

Linkage Disequilibrium Blocks Estimated by Principal-Components
Analysis

Linkage Disequilibrium Group
% of

Variation
Cumulative %
of Variation

s8, SL, s11, s12, s13, s19, s20, s22 38.7 38.7
s5, s9, s11, s14, s17, s21, s23 17.5 56.2
s4, s5, s6, s7, s22 12.9 69.3
s3, AT 7.9 77.2
s24, s25 5.6 82.8
s1, s2 4.8 87.6
s18 4.0 91.6

typical—the ultimate aim is to apply the method to sub-
stantial genomic regions with hundreds or thousands of
loci and substantial numbers of genotyped individuals.
The current program is quite efficient, and computation
times scale linearly with the number of loci. The speed
is approximately constant in the number of haplotypes,
since the implementation avoids recalculating log likeli-
hoods by storing the results. The cost of this is, of course,
some increased storage space. The issue of efficiency to
be addressed is not so much one of algorithmic efficiency
as one of how the stochastic behavior of the simulated
annealing search or Metropolis sampling changes as the
state space grows.

The current perturbation scheme involves a limited
set of changes, ranging from simply adding or deleting
an edge to swapping the adjacency sets for a pair of
vertices. The graphs produced by larger changes have
a smaller probability of being accepted in the annealing
scheme, but the rare acceptances are important. Other
ways of improving mixing properties include Metrop-
olis random restarts (George and Thompson, in press),
using restarts proposed by sequential imputation (Kong
et al. 1993), and simulated tempering (Geyer and
Thompson 1995), under which the annealing parameter
is randomly changed. With simulated tempering, all re-
alizations produced can be used with the appropriate
importance sampling weight, or, more simply, only
those produced with annealing parameter 1 are used.

Several MCMC methods are readily amenable to par-
allelization. The precursor to simulated tempering was
Metropolis-coupled MCMC, or MCMCMC, in which

several chains are run simultaneously with different an-
nealing parameters (Geyer 1991). Instances are then
swapped between chains with Metropolis probabilities,
and realizations are selected from the chain with an-
nealing parameter 1 or from all chains with appropriate
importance weights. This was originally conceived of
as being run on a parallel processing machine; how-
ever, using it effectively requires many processors, each
with temperature differing only slightly from its neigh-
bors. In practice, therefore, it was usually implemented
in a sequential fashion and, under such circumstances,
simulated tempering is a better option. However,
MCMCMC is perfectly suited to current massively par-
allel metaclusters. Each processor can be given a Mar-
kov chain to run and can do so almost independently
of the other processors. The interprocessor communi-
cation needed is minimal: just the random swapping of
states when the Metropolis probabilities require it. In
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Figure 6 The estimated graphical model from figure 3, showing linkage disequilibrium groups and haplotype tagging loci estimated by
principal-components analysis. Note that including AT, s1, and s24 as tagging loci was somewhat arbitrary, since the analysis showed that s3,
s2, and s25, respectively, could replace each of them equally well.

fact, even this can made faster simply by swapping the
annealing parameters rather than the whole graphical
state.

So far, we have essentially assumed that we can con-
sider humans as a haploid species. Given the reported
performance of haplotype reconstruction programs
(Stephens et al. 2001; Niu et al. 2002), this is probably
a reasonable assumption to apply when estimating as-
sociations between polymorphisms only and when the
amount of missing data is low. However, when also
applied to phenotypes and covariates, it is a very rough
and ready approach. Simply classifying each haplotype
by whether it belongs to an affected or an unaffected
individual fails to account for the mode of inheritance
of the disease and may give misleading results. We are
currently extending the graphical model to include a
layer corresponding to individuals and are also making
extensions to deal with pedigree data to enable link-
age analysis with linkage disequilibrium. This, in effect,

would incorporate the sampling methods presented here
with the MCMC method developed for linkage analysis
by Thomas et al. (2000).

The reasons for choosing graphical modeling for an-
alyzing associations between polymorphisms are nu-
merous. The approach is theoretically rigorous. It re-
quires no prior restrictions on the order of associations
between loci: whether they are pairwise, three-way, or
more complex is freely estimated in the procedure. It
estimates empirically the independences and depend-
ences between loci caused by the recombination process,
the mutation process, and population history without
modeling any of these. It can be used to select infor-
mative subsets of SNPs. Testing for association between
phenotypes and loci fits naturally into the framework,
and the tests developed will be statistically efficient. Fi-
nally, output and results can be easily visualized graph-
ically and understood intuitively. All in all, we believe
that these “Hap-Graphs” have considerably more po-
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tential to describe associated loci and facilitate analysis
than do Hap-Maps.
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